Implementation of Deep Learning in Independent Curriculum

Literature Study and Implications for Future Education

Authors

  • Ida Arina Universitas Pendidikan Indonesia
  • Yusuf Tri Herlambang Universitas Pendidikan Indonesia

DOI:

https://doi.org/10.37329/cetta.v8i4.4486

Keywords:

Deep Learning, Independent Curriculum, Future Education

Abstract

In today's digital era, various significant new challenges and opportunities are faced by the world of education. The Independent Curriculum implemented in Indonesia is designed to provide freedom and comfort to students in developing their potential. In this context, the application of the Deep Learning concept is considered increasingly important. This study aims to discuss the application of Deep Learning in the Independent Curriculum and its application to future education. The literature study method with a qualitative descriptive approach is used to describe and analyze the application of Deep Learning in the Independent Curriculum. The main focus of the study is the collection and analysis of information from relevant literature sources. Based on the literature study that has been conducted, a significant impact on future education can be provided by the application of Deep Learning in the Independent Curriculum. Some important aspects include personalization of learning, data analysis, interactive content, improving the quality of teaching, the potential of artificial intelligence (AI), and preparation for the future.

References

Alhapip, L., Isal, R. Y. K., Aji, R. F., & Anwas, E. O. M. (2024). Strengthening the Role of Local Governments in Implementing the Merdeka Curriculum Policy through Knowledge Management. Eurasian Journal of Educational Research, 2024(114), 48-72.

Anggraini, D. L., Yulianti, M., Nurfaizah, S., & Pandiangan, A. P. B. (2022). Peran Guru Dalam Mengembangan Kurikulum Merdeka. Jurnal Ilmu Pendidikan Dan Sosial, 1(3), 290-298.

Babu, B. V., Aravinth, S. S., Gowthami, K., Navyasri, P., Jivitha, A., & Yasaswini, T. (2024). Enhancing Personalized Learning Experiences By Leveraging Deep Learning for Content Understanding in E-Learning Recommender Systems. 2024 International Conference on Computing and Data Science (ICCDS), 1-6.

Baharuddin, M. R. (2021). Adaptasi Kurikulum Merdeka Belajar Kampus Merdeka (Fokus: Mode$l MBKM Program Studi). Jurnal Studi Guru dan Pembelajaran, 4(1), 195-205.

Bendriyanti, R. P., Setyawan, A., Kurniasih, N., & Citrawati, T. (2024). Integrating Neuroeducation Into Educational Management: A Breakthrough For Enhancing Elementary Education. BIO Web of Conferences, 146, 01098.

Chen, L., Chen, P., & Lin, Z. (2020). Kecerdasan Buatan Dalam Pendidikan: Tinjauan. IEEE Access , 8 , 7525-7539.

Ding, D., Liu, G., Li, W., Liu, Y., Song, M., & Liu, N. (2021). Micro-Project Design And Teaching Practice Based on Sticky Theory. Proceedings of the 5th International Conference on Education and Multimedia Technology, 274-278.

Dwi, J., Amrullah, J. D. R., Prasetya, F. B., Rahma, A. S., Setyorini, A. D., Salsabila, A. N., & Nuraisyah, V. (2024). Efektivitas Peran Kurikulum Merdeka Terhadap Tantangan Revolusi Industri 4.0 Bagi Generasi Alpha. Jurnal Pendidikan dan Pembelajaran Indonesia (JPPI), 4(4), 1313-1328.

Hadiansyah, Y., & Muhtar, T. (2023). Peran Pedagogik Futuristik Dalam Mendukung Kurikulum Baru. Naturalistic: Jurnal Kajian Dan Penelitian Pendidikan Dan Pembelajaran, 7(2), 1739-1748.

Hwang, G. J., et al. (2020). Dampak Sistem Pembelajaran Adaptif Berbasis Pembelajaran Mendalam Terhadap Hasil Belajar Siswa: Uji Coba Terkontrol Acak. Teknologi Pendidikan & Masyarakat, 23(1), 1-12.

Hwang, G. J., et al. (2021). Tinjauan Penerapan Kecerdasan Buatan Untuk Pembelajaran Personal Dalam Pendidikan Daring. Penelitian dan Pengembangan Teknologi Pendidikan, 69(5), 2583-2601.

Jones, A., & Cowie, B. (2011). Moving Beyond Deconstruction And Reconstruction: Teacher Knowledge-As-Action. Dordrecht: Springer Netherlands.

Jothi, J. S. B., Begum, S., Babu, A. R., Dahiya, V., Rathod, U. S., & Selvakumari, R. (2024). Student Interest Identification in Education Using Deep Learning Approach. Proceedings of the 2024 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems, ICSES 2024, 1-6.

Junus, F. B., & Brophy, S. P. (2023). Exploring The Potential of Deep Learning for Personalized Learning Environments. ASEE Annual Conference and Exposition, Conference Proceedings.

Kim, J., et al. (2019). Dampak Konten Pembelajaran Interaktif Yang Dihasilkan Oleh Pembelajaran Mendalam Terhadap Keterlibatan Siswa Dan Hasil Belajar. Jurnal Pengembangan dan Pertukaran Teknologi Pendidikan (JETDE), 12(1), 1-14.

Larsen, S. B., Kjærsgaard, N. C., Bigum, P. V., & Jacobsen, P. (2020). Understanding How Students Learn In Project-Based Courses A Review Of Literature. SEFI 47th Annual Conference: Varietas Delectat Complexity Is the New Normality, Proceedings, 1684-1693.

Manalu, J. B., Sitohang, P., & Henrika, N. H. (2022). Pengembangan Perangkat Pembelajaran Kurikulum Merdeka Belajar. Prosiding Pendidikan Dasar, 1(1), 80-86.

Nguyen, Q., et al. (2022). Sistem Umpan Balik Otomatis Berdasarkan Pembelajaran Mendalam Untuk Meningkatkan Efektivitas Pengajaran. Computers & Education, 180, 104431.

Ockta, Y., & Mardesia, P. (2023). A Correlational Study: Pedagogical And Professional Competence Of Physical Education Teachers In Relation To The Implementation Of The Merdeka Curriculum. Journal of Physical Education and Sport, 23(12), 3325-3331.

Putri, R. (2024). Inovasi Pendidikan dengan Menggunakan Model Deep Learning di Indonesia. Jurnal Pendidikan Kewarganegaraan Dan Politik, 2(2), 69-77.

Saa, S. (2024). Merdeka Curriculum: Adaptation Of Indonesian Education Policy In The Digital Era And Global Challenges. Revista de Gestao Social e Ambiental, 18(3).

Sharma, A., Yadav, A., Singh, H., Ranjan, V., Joshi, N., & Hazara, D. (2024). Harmonizing Tradition with Innovation: A Deep Learning-Powered Personalized Erhu Teaching Experience. 2024 International Conference on IoT, Communication and Automation Technology (ICICAT), 1524-1528.

Shemshack, A., & Spector, J. M. (2021). A Comprehensive Analysis Of Personalized Learning Components. Journal of Computers in Education, 8(4), 485-503.

Sulistyo, L., & Waluyo, B. (2019). Project Based Learning Model With Scientific Approach, Implementation Of Children’s Education Of Nation To Facing The Golden Generation Era. Journal of Physics: Conference Series, 1321(2).

Syofyan, H., Rosyid, A., Fadli, M. R., & Yusuff, A. A. (2024). Teacher Readiness Factors that Influence the Implementation of the Merdeka Curriculum in Elementary Schools. Journal of Curriculum and Teaching, 13(5), 168-180.

Tatavarthy, M. V. S. N., & Lakshmi, V. N. (2022). Pedagogical Content Knowledge Classification using CNN with Bi-LSTM. International Journal of Engineering Trends and Technology, 70(8), 264-271.

Wijayanti, D. M., Pramono, S. E., & Handoyo, E. (2024). Principal Decision-Making In Implementing Merdeka Curriculum In Elementary Schools: A Review. International Journal of Evaluation and Research in Education, 13(6), 4365-4373.

Yang, Y., & Yu, D. (2019). Design Of Computer Fundamental Application Course Teaching To Promote Deep Learning. ACM International Conference Proceeding Series, 78-81.

Downloads

Published

12-06-2025

How to Cite

Arina, I., & Tri Herlambang, Y. . (2025). Implementation of Deep Learning in Independent Curriculum: Literature Study and Implications for Future Education. Cetta: Jurnal Ilmu Pendidikan, 8(4), 70–78. https://doi.org/10.37329/cetta.v8i4.4486

Most read articles by the same author(s)